D16

Applications

The valve is available with manual, hydraulic remote, pneumatic, electrohydraulic and electropneumatic controls. Numerous configurations and solutions are possible. Working sections have auxiliary valves and a broad range of interchangeable spools. Special versions for LS variable pumps can be realised on request.
Suitable for applications including Backhoe loaders, Wheel loaders, Backhoes, Compactor, Hook and Skip loaders, Drilling machines.
D16 has available:
Special inlet section with second pump managing system (Backhoe loaders).
Electric operated clamping valve (Backhoe loaders).
Special inlet with priority function for steering.
Special intermediate section for combination with D20 and D25.

GENERAL SPECIFICATION	D9	D3M	DVS10	D4	D6	D16	D12	DVS20	D20	D25	D40
Working sections number	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-12	1-10
CIRCUIT											
Parallel	-	-	-	-	-	-	-	-	-	-	-
Series	-	-	-	-	-	-	-		-	-	
Tandem	-	-	-	-	-	-		-	-		
Parallel circuit stroke (mm)	6	5	6	6	7	7	9,5	9,5	9,5	12	15
Series circuit stroke (mm)	6	5	6	6	5	7	6,5		6,5	8,5	
Float spool extra stroke (mm)	5	5	5	5,5	6	7	7	7	7	9,5	10
Spools pitch (mm)	31	38	35	40	46	46	56	56	64	75	91
RATED FLOW											
Max recommended flow rate ($1 / \mathrm{min}$)	35	55	45	80	100	150	180	250	250	380	700
Max recommended flow rate (GPM)	10	15	12	22	27	40	48	67	67	100	185
RATED PRESSURE											
Max working pressure (bar)	350	350	350	350	350	350	350	250	350	350	350
Max working pressure (PSI)	5000	5000	5000	5000	5000	5000	5000	4000	5000	5000	5000

OPTION CHART	D9	D3M	DVS10	D4	D6	D16	D12	DVS20	D20	D25	D40
Direct acting pressure relief valve	-	-	-	-							
Pilot operated pressure relief valve		-		-	-	\bullet	-	-	-	-	-
2 stage pilot operated relief valve		-		-	-	-	-		-	-	-
Externally piloted valve	-	-	-	-	-	-	-		-	-	-
Solenoid dump valve ($12 \mathrm{Vdc} \mathrm{)}$	-	-	-	-	-	\bullet	-				
Solenoid dump valve (24 Vdc)	-	-	-	-	-	-	-				
Main anticavitation check valve		-		-	-	-	-	-	-	-	-
Clamping valve		-	-	-							
SPOOL ACTUATION											
Manual control	-	-	-	-	-	-	-	-	-	-	-
Without lever	-	-	-	-	-	-	-	-	-	-	-
90° joystick control		-	-	-	-	-					
Hydraulic control	-	-	-	-	-	-	-	-	-	-	-
Direct electric control ($12-24 \mathrm{Vdc}$)		-		-							
SPOOL RETURN ACTION											
Spring return	-	-	-	-	-	-	-	-	-	-	-
Detent in A - in B - in A/B	-	-	-	-	-	-	-	-	-	-	-
Detent in $4^{\text {th }}$ position	-	-	-	-	-	-	-	-	-	-	-
Arrangement for dual control	-	-		-	-	-	-		-		
Hydraulic load limit	-	-		-	-	-					
Pneumatic control ON - OFF		-	-	-	-	-	-	-	-		
Proportional pneumatic control		-	-	-	\bullet	-	-	\bullet	-		
Electrical load limit	-	-		-	-	-					
Electrohydraulic control ON-OFF (12-24 Vdc)		-	-	-	-	-	-	-	-		
Electrohydraulic control PROP. (12-24 Vdc)		-	-	-	-	\bullet	-	-	-		
Electropneumatic control (12-24 Vdc)		-	-	-	-	-	-		-		
AUXILIARY VALVES											
Antishock valve	-	\bullet	-	-	-	\bullet	\bullet	\bullet	\bullet	\bullet	-
Anticavitation valve	-	-	-	-	-	\bullet	-	-	-	-	-
Combined valve	-	\bullet	-		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet
Pilot combined valve						-		\bullet	-	-	\bullet

GENERAL INDEX

4 General specifications

Standard working conditions
Fluid options
5 Order example
Standard thread
Thread codes
Tie-rod kit classification
Painting
7 Dimensions
8
Typical curves
Pressure drop (P - T)
Pressure drop ($P-A / B$)
Pressure drop ($\mathrm{A} / \mathrm{B}-\mathrm{T}$)
Direct relief valve curve
Combined valve curve
Antishock valve curve
Anticavitation check valve curve
10 Inlet Section
Order example
Inlet side classification
Valve identification
Valve arrangement
Inlet position and available thread type
13 Working section
Order example
Spool identification
Spool actuation classification for manual control
Spool actuation classification for hydraulic control
Spool return action classification - Spring load values
Work section identification
Auxiliary valves identification
27 Intermediate inlet section
Order example
Intermediate inlet section classification
Valve identification on intermediate inlet section
Valve arrangement on intermediate inlet section
Inlet position and available thread type
30 Intermediate outlet section
Order example
Intermediate outlet section classification
Inlet position and available thread type
(for BF intermediate)
Inlet position and available thread type
(for BG intermediate)
33 Outlet section (version 1 outlet)
Order example
33 Outlet section (HPCO version outlet)
Order example - HPCO version outlet
Outlet with single tank classification
Outlet with two tanks classification
Carry-over connection (HPCO)
37 D16 Spare parts list
Gasket kits
41 Installation and maintenance
43 General conditions and patents

Description	Value
Ambient operating temperature range	$-40^{\circ} \mathrm{C} /+60^{\circ} \mathrm{C}$
Kinematic viscosity range	$10 \div 300 \mathrm{cSt}$
Max contamination level	9 (NAS 1638) - 20/18/15 (ISO 4406:1999)
Recommended filtration level	b10 > 75 (ISO 16889:2008)
Internal filter (on electroproportional valves pilot line)	$30 \mu \mathrm{~m}$

All information and diagrams in this catalogue refer to a mineral base oil VG46 at $50^{\circ} \mathrm{C}$ temperature (32 cSt kinematic viscosity)

Types of fluid (according to ISO 6743/4) Oil and Solutions	Temperature (${ }^{\circ} \mathrm{C}$)		Compatible gasket
	min	max	
Mineral Oil HL, HM (or HLP acc. to DIN 51524)	-25	+80	NBR
Oil in water emulsions HFA	+5	+55	NBR
Water in oil emulsions HFB	+5	+55	NBR
Polyglycol-based aqueous solution HFC	-10	+60	NBR

For special applications and different fluids, please call our Technical Department.

ORDER EXAMPLE

D16/1:
IR 009150 A G05
W001A H001 F001A RP G05 01 PA 10005 PB
TJ A G06

TYPE:

D16: product type
/1: working section number

1) INLET ARRANGEMENT: pag. 10

IR 009	inlet side and valve type
150	setting (bar)
A G05	inlet position and available thread type

2) WORK SECTION ARRANGEMENT: pag. 13

w001A

H001
F001A
RP G05
01 PA 100
05 PB
spool type
spool actuation type
spool return action type
type and thread section
auxiliary valve (port A)
auxiliary valve (port B)
3) OUTLET ARRANGEMENT: pag. 33

TJ
A G06
outlet type
outlet position and available thread type

Ordering row 2 must be repeated for every work section

The connection ports size is indicated by an ordering code common for all Hydrocontrol products. Following table shows all available connections; for ordering code refer to table on page 42.

Ports	BSP (ISO - 228)	Code	UN-UNF (ISO - 725)	Code
Inlet Port (P)	G 3/4	G05	$1^{\prime \prime} 1 / 16-12$ UNF	U05
Ports (A - B)	G 3/4	G05	$1^{\prime \prime} 1 / 16-12$ UNF	U05
Outlet (T)-Carry over (HPCO)	G 1	G06	$1^{\prime \prime} 5 / 16-12$ UNF	U06
Hydraulic Pilot	G $1 / 4$	G02	$9 / 16^{\prime \prime}-18$ UNF	U02
Pneumatic Pilot	G 1/8	-	NPTF 1/8-27	-

Tie-rod kit classification (appendix " A ")

Tie rod kit allows the correct assembly of sectional valves. Tie rod's length depends on the number of sections; each valve is assembled with tie rod kits including a tie rod, two nuts and two washers. D16 requires 4 tie-rod kits.

Tie rod kit	Order Code	Lenght (mm)	Clamping Torque (Nm)
D16/1	300145001	200	
Q16/2	300145002	246	
D16/3	300145003	292	
D16/4	300145004	338	
D16/5	300145005	384	
D16/6	300145006	430	5
D16/7	300145007	576	
D16/8	300145008	522	
D16/9	300145009	614	
D16/10	300145010	660	
D16/11	300145011	706	

On request, all Hydrocontrol valves can be delivered painted (RAL 9005 black primer).

Order example of D16/1 painted:

D16/1

IR 009150 A G05
W001A H001 F001A RP G05 01 PA 10005 PB
TJ A G06
P006/1 N10

The painting is indicated with the following value:

Indicated values have been tested with standard sectional valve and W001A spool.

Pressure drop (P - T)

Pressure drop (P - A/B)

Pressure drop (A/B - T)

Pilot operated relief valve curve

Setting ranges

type	pressure (bar)
A	$0-40$
B	$41-180$
C	$181-250$
D	$251-350$

TYPICAL CURVES

Indicated values have been tested with standard sectional valve and W001A spool.

Antishock valve curve

Setting ranges

Setting ranges		
type	pressure (bar)	
	at full flow	at min. flow
A	$70-150$	$70-\mathrm{A} / 120-\mathrm{A}$
B	$151-230$	$121-\mathrm{A} / 200-\mathrm{A}$
C	$231-280$	$201-\mathrm{A} / 250-\mathrm{A}$
D	$281-350$	$251-\mathrm{A} / 350-\mathrm{A}$

Combined valve curve

Setting ranges		
type	pressure (bar)	
	at full flow	at min. flow
A	$30-95$	$30-\mathrm{A} / 65-\mathrm{A}$
B	$96-150$	$66-\mathrm{A} / 120-\mathrm{A}$
C	$151-260$	$121-\mathrm{A} / 230-\mathrm{A}$
D	$261-350$	$231-\mathrm{A} / 350-\mathrm{A}$

Main anticavitation check valve curve

Anticavitation check valve curve

	IR	009	150	A G05
 inlet side classification valve arrangement setting (bar) inlet position and available thread type				

Rif.	Code	Description	Page
-	$\begin{aligned} & \text { IR } \\ & \text { IL } \end{aligned}$	Sectional valve with right inlet section Sectional valve with left inlet section	11
1	$\begin{aligned} & 009 \\ & 010 \\ & 012 \\ & 013 \\ & 019 \\ & 020 \end{aligned}$	Pilot operated pressure relief valve Pilot operated pressure relief valve and Main anticavitation check valve Pilot operated pressure relief valve and Solenoid dump valve 12 Vdc Pilot operated pressure relief valve and Solenoid dump valve 24 Vdc Without valves Main anticavitation check valve	12
2	A G05 C G05 A U05 C U05	Upper inlet (thread G 3/4) Central side inlet (thread G 3/4) Upper inlet (thread $1^{\prime \prime} 1 / 16-12$ UNF) Central side inlet (thread 1"1/16-12 UNF)	

NOTE: when ordering a relief valve it is necessary to specify factory setting (example 150).

Inlet side classifications

Valve identification

type schema layout

Valve arrangement

Combination valve example: $009=2 \mathrm{~A}-3 \mathrm{~B}$
009 Combination valve
2A Pressure relief valve in port A
3B Relief valve plugged in port B

The code identifies:

with a number, the type of valve; with a letter its position on the inlet section.
(A) $=$ spool action side
(B) $=$ spool return action side

NOTE: when ordering a main relief valve it is necessary to specify setting

VALVE COMBINATION INLET SECTION			Valve type on port B							
			$\text { © }{ }^{\circ}$	0	0		6	Com		(0)
			2	3	4	5	6	7	8	11
$\begin{aligned} & 4 \\ & \frac{2}{1} \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 0 \\ & \frac{3}{n} \\ & \gg 1 \end{aligned}$	Coc	2		009	010		011	012	013	016
	0	3	018	019	020	021	022	023	024	027
	0	4	029	030		031	032	033	034	037
	Com	5		038						
	(1)	6	047	048						
		7	054	055						
		8	061	062						
	Bo	11	085							

NOTE: Valve combinations 021 , and 038 requires double setting (see example).
Order example for inlet section: IR 038 200*280 A G05

038
200*380
valve combination double range setting (bar)
A G05

WORKING SECTION

Order example:

		W001A	H001	F001A	RP G05	01 PA 100	05 PB
1.	w001A	spool type					
2.	H001	spool actuation type					
3.	F001A	spool return action	pe				
4.	RP G05	section and thread ty	pe				
5.	01 PA 100	auxiliaty valve (port	- handl	side)			
6.	05 PB	auxiliaty valve (port	- cap sid				

Rif.	Code	Description	Page
1	w001 W002	3 positions double-acting 3 positions double-acting $A-B$ to tank	14
2	$\begin{aligned} & \text { H001 } \\ & \text { H005 } \end{aligned}$	Protected lever hydraulic actuation	16
3	$\begin{aligned} & \text { F001A } \\ & \text { F002A } \end{aligned}$	3 positions spring-centred spool (spring A) 3 positions spring-centred spool detent in A and B (spring A)	17
4	RP G05 RP U05 RS G05 RS U05	Parallel circuit (G3/4) Parallel circuit ($1^{\prime \prime} 1 / 16-12$ UNF) Series circuit (G 3/4) Series circuit ($1^{\prime \prime} 1 / 16-12$ UNF)	25
5	$\begin{aligned} & 01 \text { PA } 100 \\ & 05 \text { PA } \end{aligned}$	Antishock valve (port A) Prearrangement for auxiliary valve (port A)	
6	$\begin{aligned} & 01 \text { PB } 100 \\ & 05 \text { PB } \end{aligned}$	Antishock valve (port B) Prearrangement for auxiliary valve (port B)	

[^0]

D16
 SECTIONAL VALVE

spools with restricted service ports				
code	circuit	restriction on diameter (mm)	section ($\mathrm{mm}^{\mathbf{2}}$)	hydraulic schema
J10	A-B IN T	0,10	3,13	
K10	A IN T	0,10	3,13	
Y10	B IN T	0,10	3,13	

	spool type available STANDARD	
CODE	A	METERED
W001	W001A	B
W002	W002A	W001B
W003	W003A	W002B
W004	W004A	W003B
W005	W005A	W004B
W006	W006A	W005B
W009	W009A	W006B
W010	W010A	WO09B
W011	W011A	
W013	W012A	
W015	W013A	
W016	W015A	

NOTE:

- W012, W013, spools need a special machining on the valve body.
- W015, W016, spools need RS type body.
- Float spool (W012) need special detent kit (F005).
- Regenerative spool (W013) need special return spring kits.
- Different spools are available on request.

Plaese contact our Sales department for more information.

Spool actuation classification for manual control

\begin{tabular}{|c|c|c|c|}
\hline code \& description \& dimensions \& configuration

\hline H001

$\mathbf{H 0 0 2}$ \& | Protected lever |
| :--- |
| Protected lever rotated 180° | \& \&

\hline H004 \& Control without lever \& \&

\hline
\end{tabular}

Spool actuation classification for Hydraulic control

Hydraulic pilot control curve

The diagram shows the spool stroke as a function of the pressure operating.

Spool return action classification - Springs load values

Spool return kits have three different sprong types; following the codes depending on spring loads.

code	description	schema	dimensions	configuration
F001A F001B F001C	3 positions spring-centred spool	$\mathcal{M}\|B\| O \mid A=0$		
F002A	```3 positions spring-centred spool detent in A and B```	$\underset{0}{\text { BA }} \underset{\sim}{2}$		
F003A	```3 positions spring-centred spool detent in A```			
F004A	3 positions spring-centred spool detent in B	$\frac{B}{0}+m[B\|0\| A=$		
F005A F009A	4 positions spring-centred spool detent in $4^{\text {th }}$ position (only for W012 spool) 2 positions in A spring-centred spool	$\left.\int_{0}^{4} \mathrm{H}\|B\| 0\|A\| 4\right]=$		
F010A	2 positions in B spring-centred spool	- 4 B ${ }^{\text {a }}$		
F011A	```2 positions detent in A spring-centred spool```			
F012A	```2 positions detent in B spring-centred spool```			
F013A F013B F013C	3 positions spring-centred spool prearrangement dual command	$\because M\|B\| 0 \mid A=$		

Proportional pneumatic control curve
The diagram shows the spool stroke as a function of the pneumatic pressure operating.

Load limit classification

Code
F024A
(escription
Load limit
in A and B schema

NOTE: on request is available the load limit with dual control; for more informations please contact our Commercial Dept.

	Spool position sensor		
Power supply	Contacts capacity	Protection degree	temperature range
12 vdc	3 A	IP 65	$d \mathrm{a}-25^{\circ} \mathrm{C} \mathrm{a}+90^{\circ} \mathrm{C}$
24 vdc	$1,5 \mathrm{~A}$		

Operational diagram

CONTROL in AeB $=$ connect PIN 1-4 and 2-3
CONTROL in $\mathbf{A}=$ connect PIN2-3
CONTROL in $\mathbf{B}=$ connect PIN $1-4$

Wiring diagram

controllo utilizzo A
neutro in $=0$
controllo utilizzo B

| code | description |
| :---: | :---: | :---: | :---: | :---: |
| F0360 | Electrical load limit
 (normally closed contacts) |
| $\mathbf{F 0 3 7 0}$ | Electrical load limit
 rotated 180°
 (normally closed contacts) |
| F0450 | Electrical load limit
 (normally open contacts) |
| F0460 | Electrical load limit
 rotated 180° |
| (normally open contacts) | |

NOTE: a HIRSCHMANN female connector, type G4 W1F, is available on request (code 413000045, to be ordered separately).

Operating temperature range
Max inlet pressure
Reduced pressure Back pressure on (T) Filtering degree
Racommended pilot pipe size
$-20^{\circ} \mathrm{C} /+80^{\circ} \mathrm{C}$
350 bar
16 bar
3 bar
25μ assoluti
Ø 6 mm - G 1/4

Electrohydraulic ON-OFF control with fixed pressure reducing valve

Electrohydraulic PROPORTIONAL control

 with fixed pressure reducing valve

Proportional control kit, mechanically retrooperated, allows the maximum precision of positioning, limiting the hysteresis. The control is operated with PWM control of the current. PWM frequency suggest: $60-80 \mathrm{~Hz}$

regolation currents			
Nominal voltage (V)	Resistance $\mathbf{R}_{\mathbf{2 0}}$ (Ohm)	Current min (A)	Current max (A)
12 vdc	3,7	0,9	1,7
24 vdc	15,5	0,45	0,85

Electrohydraulic control classification

Electrohydraulic ON-OFF control is stackable with electrohydraulic PROPORTIONAL control (F2600 = F2610). Control kit already includes ortifice to make spool displacement more gradual.

Electrohydraulic control with fixed pressure reducing valve classification

code	description	configuration
F1500	Electrohydraulic control ON - OFF (fixed pressure reducing valve) P - T inlet side (12 vdc)	
F1510	Electrohydraulic control ON - OFF (fixed pressure reducing valve) P - T inlet side (24 vdc)	
F2500	Electrohydraulic control PROPORTIONAL (fixed pressure reducing valve) P - T inlet side (12 vdc)	
F2510	Electrohydraulic control PROPORTIONAL (fixed pressure reducing valve) P - T inlet side (24 vdc)	
F1520	Electrohydraulic control ON - OFF (fixed pressure reducing valve) P inlet - T outlet (12 vdc)	
F1530	Electrohydraulic control ON - OFF (fixed pressure reducing valve) P inlet - T outlet (24 vdc)	
F2520	Electrohydraulic control PROPORTIONAL (fixed pressure reducing valve) P inlet - T outlet (12 vdc)	
F2530	Electrohydraulic control PROPORTIONAL (fixed pressure reducing valve) P inlet - T outlet (24 vdc)	

Control tie rod assembly

The lenght of the control tie rod, will change depending on the section numbers; in this way it will be easy to install in the right way the sections and avoid any misassembly. Each kit is composed by 2 tie rods, 2 plugs, 2 connection ports and spacers according to the section number.
NOTE: the control tie rod kit has always to be oedered separately.
Reducing valve, combined with electrohydraulic control kit has to be calculated as a normal working section.

ORDER EXAMPLE:

Complete valves with 3 sections F1600 requires a complete tie-rod kit / 3 .
Complete valves with 2 sections F 1600 and 1 section with F1500 (reducing valve) requires a complete tie-rod kit /4.

Order code fixed pressure reducing valve:

915000303 = reducing valve for BSP ports
915000312 = reducing valve for UNF ports
Order code for control tie rod (BSP):
320103001 = control tie rod $/ 1$
$320105001=$ control tie rod $/ 2$
$320105002=$ control tie rod $/ 3$
$320105003=$ control tie rod $/ 4$
$320105004=$ control tie rod $/ 5$
320105005 = control tie rod $/ 6$
$320105006=$ control tie rod $/ 7$
$320105007=$ control tie rod $/ 8$
$320105008=$ control tie rod $/ 9$
Order code for control tie rod (UNF):
320103026 = control tie rod $/ 1$
$320105026=$ control tie rod $/ 2$
$320105027=$ control tie rod $/ 3$
$320105028=$ control tie rod $/ 4$
$320105029=$ control tie rod $/ 5$
$320105030=$ control tie rod $/ 6$
$320105031=$ control tie rod $/ 7$
$320105032=$ control tie rod $/ 8$
320105033 = control tie rod $/ 9$

Electropneumatic control classification

code	description		dimensions	configuration
F0620	3 positions electropneumatic control ON-OFF $(12 \mathrm{vdc}) 7 \mathrm{~W}-0,58 \mathrm{~A}$	Minimum working		
F0630	3 positions electropneumatic control ON-OFF $(24 \mathrm{vdc}) 7 \mathrm{~W}-0,29 \mathrm{~A}$	pressure 5 bar		

Control tie rod assembly

The lenght of the control tie rod, will change depending on the section numbers; in this way it will be easy to install in the right way the sections and avoid any misassembly. Each kit is composed by 1 tie rod and 2 plugs.
NOTE: the control tie rod kit has always to be oedered separately.

Order code for control tie rod (BSP):
320105013 = control tie rod $/ 1$
320105014 = control tie rod $/ 2$
$320105015=$ control tie rod $/ 3$
$320105016=$ control tie rod $/ 4$
$320105017=$ control tie rod $/ 5$
320105018 = control tie rod $/ 6$
$320105019=$ control tie rod $/ 7$
$320105020=$ control tie rod $/ 8$

Order code for control tie rod (UNF):
320105037 = control tie rod $/ 1$
$320105038=$ control tie rod $/ 2$
320105039 = control tie rod $/ 3$
$320105040=$ control tie rod $/ 4$
$320105041=$ control tie rod $/ 5$
320105042 = control tie rod $/ 6$
$320105043=$ control tie rod $/ 7$
320105044 = control tie rod $/ 8$

Compatibility table

$\begin{aligned} & \text { SPOOL } \\ & \text { ACTION } \\ & \text { TYPE } \end{aligned}$	SPOOL TYPE																			
	$\begin{aligned} & 4 \\ & \hline 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \text { O } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { ब } \\ & \text { M } \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \infty \\ & \text { M } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{1}{\circ} \\ & \vdots \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & \mathbf{H} \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { m } \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathbb{6} \\ & 8 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ब } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ゅ } \\ & \text { o } \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \overleftarrow{0} \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \$ \\ & \mathbf{1} \\ & 0 \\ & 3 \end{aligned}$	$$	$\begin{aligned} & \mathbb{K} \\ & \stackrel{1}{3} \\ & \vdots \\ & 3 \end{aligned}$		$\begin{aligned} & 4 \\ & 6 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$
H001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H002	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H004	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SPOOL SPOOL TYPE																				
RETURN ACTION TYPE	$\begin{aligned} & \$ \\ & -8 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{7}{\circ} \\ & 0 \end{aligned}$	$\begin{aligned} & \$ \\ & \text { N } \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { N } \\ & \text { O } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { K } \\ & \text { O } \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { M } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { O } \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { n } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	K 8 8 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \boxed{g} \\ & 8 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { O } \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & -1 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \underset{N}{0} \\ & \vdots \end{aligned}$	$\begin{aligned} & \mathbb{K} \\ & \\ & \vdots \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & \stackrel{4}{15} \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 《 } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$
F001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
F002	-	-	-	-	-	\bullet	\bullet	-	-	-	-	-	-	-	-	-			-	-
F003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-
F004	-	-	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	-			-	-
F005																	-			
F009	\bullet	\bullet	\bullet	-	-	\bullet	\bullet	\bullet					-	\bullet	\bullet	-			-	-
F010	-	-	-	-	-	-	-	\bullet					-	-	-	-			-	-
F011	-	-	-	-	-	-	-	-					-	-	-	-			-	-
F012	-	-	-	-	-	-	-	-					-	-	-	-			-	-
F013	-	-	-	-	-	-	-	\bullet	-	-	-	-	-	\bullet	\bullet	-		-	-	-
$F 020=F 021$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
$F 022=F 023$	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-		-	-	-
$F 135=F 136$	-	-	-	-	-	\bullet	-	\bullet	-	-	-	-	-	-	-	\bullet		\bullet	-	-
$F 126=F 127$	-	-	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	-		-	-	-
$\mathrm{F024}=\mathrm{F} 025$	-	-	-	-	-	-	-	-					-	-	-	-			-	-
F026=F027	-	-	-	-	-	-	-	\bullet					-	\bullet	-	-			-	-
$F 028=F 029$	-	-	-	-	-	\bullet	-	\bullet					-	\bullet	-	-			-	-
$\mathrm{F0360}=\mathrm{F0370}$	-	-	-	-	-	-	-	-	\bullet	\bullet	-	\bullet	-	-	-	\bullet			-	-
$F 0450=F 0460$	-	\bullet	-	-	-	\bullet	-	-	-	-	-	-	-	-	-	\bullet			-	-
$F 0620=F 0630$	\bullet	-	-	\bullet	-	\bullet	\bullet	\bullet					-	-	\bullet	-		\bullet	-	-
$F 1500=F 1510$	\bullet	-	-	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	\bullet	-	-	-	-		\bullet	-	-
$F 1520=F 1530$	-	-	-	\bullet	-	\bullet	-	-		\bullet	-	\bullet								
F2500 $=\mathbf{F 2 5 1 0}$	-	-	-	-	-	\bullet	-	-	\bullet	-	-	-	-	-	-	-		-	-	\bullet
$F 2520=F 2530$	-	-	-	-	\bullet	\bullet	\bullet	\bullet	-	-	-	-	-	-	-	-		\bullet	-	-
$F 1600=F 1610$	\bullet	-	-	-	-	\bullet	-	\bullet	-	\bullet	-	\bullet	-	-	\bullet	\bullet		\bullet	-	-
F2600 $=$ F2610	-	-	-	\bullet	-	-	\bullet	\bullet	\bullet	-	-	-	-	-	\bullet	-		\bullet	-	-

Work section identification

working section type

RP G05

Parallel circuit section

When the spool is operated it intercepts the by-pass gallery by diverting the flow of oil to service port A or B . If two or more spools are actuated at the same time, the oil will power the service port that has the lower load; by throttling the spools, the flow of oil can be divided between two or more service ports.

When the spool is operated it intercepts the switch gallery by diverting the flow of oil to service port A or B. The oil that flows back from the actuator is carried to the switch gallery thus making it available to the service ports downstream from the series section. The pressure drop downstream is added to the pressure drop of the section itself.

Auxiliary valve identification

Auxiliary valve - Setting range

Sections designed to house auxiliary valve option require double choise on work ports A and B.
Always indicate setting value when using antishock valve:
01 PA (120) = setting at full flow
01 PA $(120-A)=$ setting at min . flow

D16

Order example

NOTE: when ordering a relief valve it is necessary to specify factory setting (example 150).

* $=$ omit the code for inlet positioning and thread

The intermediate inlet section is driven by two pumps ($P+P 1$). The downstream elements can be set to a lower pressure than the upstream ones by adjusting the pressure relief valve of the intermediate section in question.

The intermediate inlet section and the elements are driven by a single pump (P). The downstream elements can be set to a lower pressure than the upstream ones by adjusting the pressure relief valve of the intermediate section in question.

Valve identification on intermediate inlet section

type schema layout description type schema configurazione descrizione

Valve arrangement on intermediate inlet section

Combination valve example: $009=2 A-3 B$

009 Combination valve
2A Pressure relief valve in port A \square
3B Relief valve plugged in port B

The code identifies:

with a number, the type of valve; with a letter its position on the inlet section.
(A) $=$ spool action side
(B) = spool return action side

NOTE: when ordering a main relief valve it is necessary to specify setting

Inlet position and available thread type

Complete configuration samples for D16/2 with intermediate inlet section (BE)

```
IR 009 150 A G05
```

\qquad

``` Right inlet section
W001A H001 F001A RP G05
``` \(\qquad\)
``` Working section
BE 009150 A G05 ......................Intermediate inlet section
W001A H001 F001A RP G05.
``` \(\qquad\)
``` Working section
TJ A G06
``` \(\qquad\)
``` Outlet section
```


Complete configuration samples for D16/2 with intermediate inlet section (BV)

IR 009150 A G05
Right inlet section

W001A H001 F001A RP G05 Working section

BV 009150
.Intermediate inlet section
W001A H001 F001A RP G05 \qquad Working section

TJ A G06 \qquad Outlet section

Rif.	Code	Type	Description	Page
	BF		Intermediate outlet section with single tank return	31
	BG		Intermediate outlet section with two tank returns	
1	A G06		Upper outlet (thread G 1)	
	A U06		Upper outlet (thread 1"5/16-12 UNF)	
	G G06	for	Front outlet side A (thread G 1)	
	G U06	BF	Front outlet side A (thread $\mathbf{1}^{\prime \prime} 5 / 16-12$ UNF)	
	H G06		Rear outlet side B (thread G 1)	
	H U06		Rear outlet side B (thread 1 " $5 / 16-12$ UNF)	
	J G06	for	Upper outlet HPCO - front side A and rear side B to T (thread G 1)	
	J U06	BG	Upper outlet HPCO-front side A and rear side B to T (thread 1"5/16-12 UNF)	

Intermediate outlet section classifications

The above outlet section allows the flow of oil of the two pumps and the tank ports to be piped to a single outlet T .

The section in question allows the flow of oil of the two pumps to be piped in two outlets: HPCO for powering another directional control valve, T for discharge of the work ports. In order to obtain this, the two T need to be linked.
A G06

Complete configuration samples for D16/2 with intermediate outlet section (BF)

IR 009150 A G05.
Right inlet section
W001A H001 F001A RP G05
Working section
BF A G06 \qquad Intermediate outlet section

W001A H001 F001A RP G05 \qquad Working section

IL 009150 A G05
Left inlet section

Complete configuration samples for D16/2 with intermediate oulet section (BG)

IR 009150 A G05. \qquad Right inlet section

W001A H001 F001A RP G05 \qquad Working section BG J G06 Intermediate outlet section W001A H001 F001A RP G05 \qquad Working section

IL 009150 A G05. \qquad Left inlet section

OUTLET SECTION (VERSION 1 OUTLET)

Order example

OUTLET SECTION (HPCO VERSION OUTLET)

Order example - HPCO version Outlet

| TM | M G06 | |
| :--- | :--- | :--- | :--- |
| 1. | TM | outlet section type |
| 2. | M G06 | outlet position and available thread type- |

Rif.	Code	Description	Page
1	TM	Outlet section with two return (T-HPCO) right-side inlet (P)	35
	TN	Outlet section with two return (T-HPCO) left-side inlet (P)	
2	M G06	HPCO upper outlet T (tank) rear outlet side B (thread G 1)	
	M U06	HPCO upper outlet T (tank) rear outlet side B (thread 1"5/16-12 UNF)	
	N G06	HPCO upper outlet T (tank) front outlet side A (thread G 1)	
	N U06	HPCO upper outlet T (tank) front outlet side A (thread 1"5/16-12 UNF)	

Outlet with single tank classification

outlet identification

Outlet section with single return (T) right-side inlet (P)

TK
Outlet section with single return (T) left-side inlet (P)

outlet combination and thread available
A G06

Outlet with two tanks classification

M G06

CARRY-OVER CONNECTION (HPCO)

This option, available on all D16, allows the sectional valve to feed a second valve, by extending the free flow channel. In this configuration, the valve need a separated port for connection to tank.

It is possible to transform sectional valve from standard to HPCO version just by ordering the appropriate conic plug:

description

q.ty

413010207
conic plug G $3 / 8 \times 15$
2

D16

Ref.	Description	Order code	Q.ty	Code	Note
1	Pilot operated pressure relief valve (*)	6364	1	-	Setting: 100 bar
		2608			Setting: 200 bar
		2744			Setting: 300 bar
	Relief valve plugged	430107001	1		
	Main Anticavitation check valve	915050701	1		
	External piloted valve	915040701	1		
	Solenoid dump valve (12 vdc) (**)	915040702	1		
	Solenoid dump valve (24 vdc) (**)	915040703	1		
	Plug with pressure-gauge connection	430107003	1		
2	3 positions double-acting spool	421245016	1	W001A	
		421245028		W001B	
	3 positions double-acting A and B to tank spool	421245002	1	W002A	
		421245015		W002B	
	3 positions single-acting on A	421245005	1	W005A	
	3 positions single-acting on B	421245021	1	W006A	
	4 positions double-acting with float in the $4^{\text {th }}$ pos.	421245027	1	W012A	
3	Protected lever	320306006	1	H001 $=$ H002	
		320306007			only for W012 spool
	Control without lever	320306002	1	H004	
		320306004			only for W012 spool
	Hydraulic actuation with side ports	320545001	1	H006	

Ref.	Description	Order code	Q.ty	Code	Note
4	3 position spring centred spool	320706001	1	F001A	
	Detent in A and B	320806001	1	F002A	
	Detent in A	320806002	1	F003A	
	Detent in B	320806003	1	F004A	
	Detent in $4^{\text {th }}$ position	320806004	1	F005A	only for W012 spool
	Prearrangement dual command	320706002	1	F013A	
	Pneumatic control ON-OFF	321106002	1	$F 020 \mathrm{~A}=\mathrm{F021} \mathrm{~A}$	BSP ports
	Proportional Pneumatic control	321206002	1	$\mathrm{F} 022 \mathrm{~A}=\mathrm{F023A}$	BSP ports
	Electropneumatic control ON-OFF (12 vdc)	321645001	1	F0620	
	Electropneumatic control ON-OFF (24 vdc)	321645002	1	F0630	
	Load limit in A and B	320045005	1	$F 024 \mathrm{~A}=\mathrm{F025A}$	BSP ports
	Load limit in A	320045003	1	$F 026 A=F 027 A$	BSP ports
	Load limit in B	320045004	1	$F 028 A=F 029 \mathrm{~A}$	BSP ports
	Electrical load limit (normaly closed contacts)	320045001	1	$F 0360=F 0370$	
	Electrical load limit (normaly open contacts)	320045013	1	$F 0450=F 0460$	
	Electrohydraulic ON-OFF (12 vdc)	321445001	1	F1600	
	Electrohydraulic ON-OFF (24 vdc)	321445002	1	F1610	
	Electrohydraulic Proportional (12 vdc)	322045001	1	F2600	
	Electrohydraulic Proportional (24 vdc)	322045002	1	F2610	
	Electrohydraulic ON-OFF (12 vdc) with reducing valve	321445003	1	$F 1500=F 1520$	BSP ports
	Electrohydraulic ON-OFF (24 vdc) with reducing valve	321445004	1	$F 1510=F 1530$	BSP ports
	Electrohydraulic Proportional (12 vdc) with reducing valve	322045003	1	$F 2500=F 2520$	BSP ports
	Electrohydraulic Proportional (24 vdc) with reducing valve	322045004	1	$F 2510=F 2530$	BSP ports
	Electrohydraulic ON-OFF (12 vdc) with reducing valve	321445005	1	$F 1500=F 1520$	UNF ports
	Electrohydraulic ON-OFF (24 vdc) with reducing valve	321445006	1	$F 1510=F 1530$	UNF ports
	Electrohydraulic Proportional (12 vdc) with reducing valve	322045006	1	$F 2500=F 2520$	UNF ports
	Electrohydraulic Proportional (24 vdc) with reducing valve	322045007	1	F2510 = 25230	UNF ports
5	Check valve on the work section	320204008	1	-	only for RP and RT section
6	Antishock valve on port A	4209	1	01 PA	Setting: 100 bar
		2743			Setting: 200 bar
		2948			Setting: 300 bar
	Anticavitation valve on port A	915080601		02 PA	
	Prearrangement for auxiliary valve on port A	430406001		05 PA	
7		4209	1	01 PB	Setting: 100 bar
	Antishock valve on port B	2743			Setting: 200 bar
		2948			Setting: 300 bar
	Anticavitation valve on port B	915080601		02 PB	
	Prearrangement for auxiliary valve on port B	430406001		05 PB	
8	Plug kit (G3/4)	430000020	1	G05	
	Plug kit (G1)	430000021		G06	
	Plug kit ($1^{\prime \prime} 1 / 12^{\prime \prime}-16$ UNF)	300007002		U05	

(*) $=$ for different settings please contact our Sales Dpt.
$(* *)=$ electric dump valve coil can be ordered separately as spare part: (see drawing " A ")
Ordering code Coil 12 vdc: 413171235
Ordering code Coil 24 vdc: 413172432
(\#) = Detent in A and B Kick-out is available only with special spool assembly

Outlet and work section

Outlet and work section			
Rif.	Order code	Description	Q.ty
1	412010609	O.R. 70SH $23,47 \times 2,62$ (2-119)	3
2	412010603	O.R. 70SH 39,34 $\times 2,62$ (2-129)	1
Complete Gasket kit: order code - 350945001			

INSTALLATION AND MAINTENANCE

Guidelines

- Mount the control valve securely to a flat surface (recommended 3 point fixing); at the time do not use a hammer to positioning by hitting.
- When handling the control valve, be careful not hold the pilot cover or return spring cap of the spool or accessory valves such as main relief valves and anti-shock relief valves.
- Clean piping materials sufficiently before use.
- Make sure to prevent the port openings from being entered with dust or foreign matters.
- Tighten the port connectors surely with the recommended fastening torques.
- Do not direct the jet of a pressure washing unit directly to the valve.

Fittings tightening torque (Nm)

thread type	port P	Port A-B	Port T
BSP (ISO-228)	G 3/4	G 3/4	G 3/4
with rubber sealing (DIN 3869)	120	120	120
with copper or steel and rubber washer	120	120	120
BSP (ISO - 228)	G 1	G 1	G 1
with rubber sealing (DIN 3869)	150	150	150
with copper or steel and rubber washer	150	150	150
UN-UNF (ISO-725)	1"1/16 12 UNF	1"1/16 12 UNF	1"1/16 12 UNF
with O.R.	120	120	120
UN-UNF (ISO-725)	1"5/16 12 UNF	1"5/16 12 UNF	1"5/16 12 UNF
with O.R.	120	120	120

The connection ports size is indicated by an ordering code common for all Hydrocontrol products. Following table shows all available connections.

METRIC THREAD (ISO 9974-1)								
Type	M18×1,5	M22x1,5	M27x2					
Code	M01	M02	M03					
BSP THREAD (ISO 1179-1)								
Type	1/4"	3/8"	1/2"	3/4"	1 1"	1"1/4	1"1/2	2"
Code	G02	G03	G04	G05	G06	G07	G08	G09
UN / UNF THREAD (ISO 11926-1)								
Type	$\begin{gathered} \text { 9/16" } 18 \text { UNF } \\ \text { SAE6 } \end{gathered}$	$\begin{gathered} 3 / 4^{\prime \prime} 16 \text { UNF } \\ \text { SAE8 } \end{gathered}$	$7 / 8^{\prime \prime} 14$ UNF SAE10	1"1/16 12 UNF SAE12	1"5/16 12 UNF SAE16	1"5/8 12 UNF SAE20		
Code	U02	U03	U04	U05	U06	U07		

Dimensions - SAE Flange codes

SAE / 3000 FLANGE (ISO 6162-1)

Type	$3 / 4^{\prime \prime}$ $(M A)$	$3 / 4^{\prime \prime}$ $(U N C)$	$1^{\prime \prime}$ $(M A)$	$1^{\prime \prime}$ $(U N C)$	$1^{\prime \prime} 1 / 4$ $(M A)$	$1^{\prime \prime} 1 / 4$ $(U N C)$	$1^{\prime \prime} 1 / 2$ $(M A)$	$1^{\prime \prime} 1 / 2$ $(U N C)$	$2^{\prime \prime}$ $(M A)$	$2^{\prime \prime}$ $(U N C)$	$3^{\prime \prime}$ $(M A)$	$3^{\prime \prime}$ $(U N C)$
Code	$\mathbf{S 0 3}$	$\mathbf{S 0 4}$	$\mathbf{S 0 5}$	$\mathbf{S 0 6}$	$\mathbf{S 0 7}$	$\mathbf{S 0 8}$	$\mathbf{S 0 9}$	$\mathbf{S 1 0}$	$\mathbf{S 1 1}$	$\mathbf{S 1 2}$	$\mathbf{S 1 5}$	$\mathbf{S 1 6}$
A	19	19	25	25	32	32	38	38	51	51	76	76
B	47,6	47,6	52,4	52,4	58,7	58,7	69,9	69,9	77,8	77,8	106,4	106,4
C	22,3	22,3	26,2	26,2	30,2	30,2	35,7	35,7	42,9	42,9	61,9	61,9
D	M10	$3 / 8-16$	M10	$3 / 8-16$	$M 10$	$7 / 16-14$	M12	$1 / 2-13$	M12	$1 / 2-13$	M16	$5 / 8-11$

SAE / 6000 FLANGE (ISO 6162-2)

Type	$3 / 4^{\prime \prime}$ $(M A)$	$3 / 4^{\prime \prime}$ $(U N C)$	$1^{\prime \prime}$ $(M A)$	$1^{\prime \prime}$ $(U N C)$	$1^{\prime \prime} 1 / 4$ $(M A)$	$1^{\prime \prime} 1 / 4$ $(U N C)$	$1^{\prime \prime} 1 / 2$ $(M A)$	$1 " 1 / 2$ $(U N C)$
Code	$\mathbf{S 3 3}$	$\mathbf{S 3 4}$	$\mathbf{S 3 5}$	$\mathbf{S 3 6}$	$\mathbf{S 3 7}$	$\mathbf{S 3 8}$	$\mathbf{S 3 9}$	$\mathbf{S 4 0}$
A	19	19	25	25	32	32	38	38
B	50,8	50,8	57,2	57,2	66,6	66,6	79,3	79,3
C	23,8	23,8	27,8	27,8	31,8	31,8	36,5	36,5
D	M10	$3 / 8-16$	M12	$7 / 16-14$	M14	$1 / 2-13$	M16	$5 / 8-11$

[^0]: NOTE: (*) Leave out the spool return action code when choosing H005.
 Sections designed to house auxiliary valve option require double choice on work ports A and B.
 Always indicate setting value when using antishock and combined valve: 01 PA (100)-03 PA (100)

